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SUMMARY

The results of a mimetic finite difference discretization of the three-dimensional, incompressible Navier–
Stokes equations are compared with more traditional finite difference schemes. The proposed method
handles both momentum advection and diffusion in a vorticity-preserving manner and allows for simple
treatment of rigid wall boundary conditions. The results obtained in various tests demonstrate the advantages
of the proposed method. Copyright q 2008 John Wiley & Sons, Ltd.

Received 22 March 2007; Revised 13 October 2007; Accepted 18 October 2007

KEY WORDS: Navier–Stokes equations; incompressible flow; turbulence simulations; mimetic discretiza-
tions; computational fluid dynamics

1. INTRODUCTION

Numerical methods for fluid flow preserving discrete analogs of some invariants of the equations
of motion (such as mass, momentum, energy, enstrophy) were studied intensively for applica-
tions to large-scale atmospheric flows, see the finite difference schemes proposed, e.g. in [1, 2].
In more recent work, several of these properties have been extended to triangular meshes under
mild regularity assumptions, see e.g. [3–5]. The development of numerical methods with discrete
conservation properties can take advantage of the so-called mimetic finite difference schemes, for
which discrete analogs of continuous identities hold, such as ∇×∇�=0, integration by parts
formulae and the Helmholtz decomposition theorem. Examples of mimetic finite differences are
given, e.g. by Hyman and Shashkov [6] and Nicolaides [7], in two- and three-dimensional frame-
works, respectively.
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Preservation of discrete invariants is usually motivated by the desire of reproducing correct energy
or enstrophy spectra, [3–5]. In this paper, we will take the viewpoint of [8] as a working hypothesis
and we will investigate numerically vorticity-preserving discretizations for incompressible flow
problems at the laboratory scale, in order to assess their potential advantages with respect to more
common discretization approaches. Specifically, a marker and cell (MAC) type, mass and vorticity-
preserving finite difference discretization of the three-dimensional Navier–Stokes equations is
introduced, based on the concepts first proposed in [2] for the shallow water equations. A similar
three-dimensional extension was first introduced in [9] for models of nonhydrostatic atmospheric
flows. Vorticity preservation means that a consistent discrete vorticity equation can be achieved by
application of a mimetic curl operator to the discrete momentum equation. As a consequence, the
spatial semi-discretization preserves irrotational discrete initial data in the absence of viscosity.
Furthermore, both the viscous term and rigid wall boundary conditions are discretized consistently
in a vorticity-preserving manner. A number of numerical experiments show that the proposed
discretization concept produces remarkable improvements with respect to conventional approaches,
especially in regimes where localized vorticity production is taking place close to boundaries. This
motivates further research and investigation, in order to achieve a more systematic assessment of
the relative merits of the present approach with respect to energy-preserving methods such as those
proposed in [4] and with respect to other finite volume and finite element discretizations.

2. A VORTICITY-PRESERVING SPATIAL DISCRETIZATION FOR THE
NAVIER–STOKES EQUATIONS

The Navier–Stokes equations for a constant density, incompressible fluid can be formulated as

�u
�t

= −x×u−∇(p+K )−�∇×x (1)

∇ ·u= 0 (2)

where x=∇×u denotes vorticity and K =‖u‖2/2 denotes kinetic energy. Taking the curl of the
momentum equation, an evolution equation for vorticity can also be obtained

�x
�t

=−∇×[x×u]+��x (3)

A discretization of Equations (1)–(2) is introduced, along the lines of popular discretization
methods such as the MAC approach or the Arakawa C grid (see, e.g. [1]). Each cell is numbered
at its center with indices i , j and k, for the x , y and z directions, respectively. The length of the
cell sides in each directions is denoted by �xi , �y j and �zk and they are assumed to vary in their
respective directions only. The cell volume is given by Vi, j,k =�xi�y j�zk and staggered spacings
�xi+1/2 are defined by arithmetic average. The discrete u velocity is defined at half integer i and
integers j and k, v is defined at integers i , k and half integer j , while w is defined at integers
i, j and half integers k. Finally, p and all other three-dimensional scalar variables are defined at
integers i , j , k. At points where they are not defined, the discrete variables are generally computed
by simple arithmetical mean of the nearest defined values. Averaged quantities will usually be
denoted by an overbar. Finite difference operators are then introduced as customary in the MAC
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approach. The vorticity fluxes, instead, are naturally defined via the Stokes theorem at the faces
of staggered control volumes, so that

�x
i, j+1/2,k+1/2 = wi, j+1,k+1/2−wi, j,k+1/2

�y j+1/2
− vi, j+1/2,k+1−vi, j+1/2,k

�zk+1/2

�y
i+1/2, j,k+1/2 = ui+1/2, j,k+1−ui+1/2, j,k

�zk+ 1
2

− wi+1, j,k+1/2−wi, j,k+1/2

�xi+1/2

�z
i+1/2, j+1/2,k = vi+1, j+1/2,k−vi, j+1/2,k

�xi+1/2
− ui+1/2, j+1,k−ui+1/2, j,k

�y j+1/2

(4)

A discrete curl operator can be defined for each cell as

curl(u,v,w)i, j,k =(�x
i, j+1/2,k+1/2,�

y
i+1/2, j,k+1/2,�

z
i+1/2, j+1/2,k) (5)

These definitions are similar to those given, e.g. in [6] and have similar mimetic properties.
A more complete description of the proposed numerical scheme can be found in the report [10].
Applying these definitions to the discretization of Equations (1)–(2) on a MAC-type grid yields
the second-order accurate spatial discretization:

�
�t
ui+1/2, j,k = −�̄y

i+1/2, j,kw̄i+1/2, j,k+�̄z
i+1/2, j,k v̄i+1/2, j,k

−�x (p+ K̄ )i+1/2, j,k

+�[�z(�y)i+1/2, j,k−�y(�
z)i+1/2, j,k] (6)

�
�t

vi, j+1/2,k = −�̄z
i, j+1/2,k ūi, j+1/2,k+�̄x

i, j+1/2,kw̄i, j+1/2,k

−�y(p+ K̄ )i, j+1/2,k

+�[�x (�z)i, j+1/2,k−�z(�
x )i, j+1/2,k] (7)

�
�t

wi, j,k+1/2 = −�̄x
i, j,k+1/2v̄i, j,k+1/2+�̄y

i, j,k+1/2ūi, j,k+1/2

−�z(p+ K̄ )i, j,k+1/2

+�[�y(�x )i, j,k+1/2−�x (�
y)i, j,k+1/2] (8)

div(u,v,w)i, j,k =0 (9)

This approach allows to preserve mass and vorticity, but not kinetic energy. It extends to the three-
dimensional, viscous, incompressible case, the techniques proposed in [3] for the discretization
of the shallow water equations on a triangular geodesic grid. These were in turn inspired by the
seminal paper [2]. In the two-dimensional inviscid case, the discretization coincides exactly with
that of [2], if constant fluid thickness is assumed in the shallow water equations considered therein.
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3. NUMERICAL EXPERIMENTS

For the purpose of numerical tests discussed in this paper, a simple second-order Runge–Kutta time
discretization was considered. The time discretization was performed along the lines of projection
methods, with an explicit predictor step and a following pressure correction step, in which a
Poisson equation is solved for pressure to ensure that the discrete divergence-free constraint is
enforced. For all the numerical tests considered, relatively small values of the time step and of the
Courant number were used, since the focus here is on the investigation of the properties of the
spatial discretization.

Throughout this section, the results of the vorticity-preserving scheme, which will be referred
to as Scheme 2, will be compared with those obtained in the same test cases with another finite
difference method for the discretization of the nonlinear momentum equation, which we will denote
as Scheme 1. More specifically, the centered finite difference method of [11] has been employed,
coupled to the same time discretization described above. The spatial discretization of [11] is also
mass conservative and uses the same MAC-type staggered grid and the same discretization of the
divergence operator. It only differs from our approach in the approximation of the momentum
equation, which does not preserve vorticity in the sense described above. The implementation of
the finite difference method of [11] used for these tests had been validated previously in a number
of laminar and turbulent flow simulations (see, e.g. [12]).

In the first numerical experiment, we have considered the benchmark test case proposed in [13],
concerning the simulation of the flow around a square cylinder. We will focus on relatively low
Reynolds numbers, for which a laminar flow regime is guaranteed. Strong vorticity production
takes place at the obstacle corners, along with vortex shedding in the lee. Reference experimental
results for this configuration are presented, e.g. in [14].

The flow has been simulated at Reynolds numbers Re=250 up to approximately 200 nondi-
mensional time units. For these values of the Reynolds number the flow is still two dimensional,
so that it is reasonable to employ a quite coarse resolution in the transversal y direction. The first
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Figure 1. Transversal velocity field around the square cylinder at Re=250, Scheme 1.
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Figure 2. Longitudinal velocity component versus time for different positions around
the square cylinder at Re=250, Scheme 2.
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Figure 3. Strouhal number in the flow around the square cylinder at Re=250, Scheme 2.

striking difference between Schemes 1 and 2 is that application of the former produces spurious
transversal velocities of the same order of magnitude of the inflow velocity. The spurious transversal
v velocity components are shown in Figure 1. On the other hand, for Scheme 2, the transversal
velocity component remains zero at machine accuracy. This seems to support the view that spurious
vorticity production can be quite damaging for local accuracy when localized vorticity production
occurs.

At Re=250, the frequency of the vortex shedding in the lee of the obstacle was also investigated
for Scheme 2. This analysis could not be carried out for Scheme 1 since a statistical steady-state
solution had not been reached yet at the end of the chosen simulation time. In Figure 2, the time

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1101–1106
DOI: 10.1002/fld
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evolution of the horizontal velocity component u is shown, as computed at various different points
in the lee of the cylinder. All the time series display the same frequency, albeit with different phase
shifts. The Strouhal number St=�/UL has also been computed, see Figure 3, yielding a value
of approximately St=0.1297 that is in good agreement with most of the values computed in [13]
and reasonably close to the experimental values reported in [14].

4. CONCLUSIONS

These results seem to show that the method has considerable advantages with respect to more
conventional approaches, especially in regimes where highly localized vorticity production is
taking place close to boundaries, thus supporting the heuristic consideration put forward in [8].
As a consequence, it seems that there is a strong motivation for further research and analysis. In
particular, we would like to carry out a more systematic assessment of the relative merits of the
present approach with respect to energy-preserving methods such as those proposed in [4] and
with respect to other finite volume and finite element discretizations.
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